Multi-objective optimization in Aspergillus niger fermentation for selective product enhancement.

نویسندگان

  • Chaitali Mandal
  • Ravindra D Gudi
  • G K Suraishkumar
چکیده

A multi-objective optimization formulation that reflects the multi-substrate optimization in a multi-product fermentation is proposed in this work. This formulation includes the application of epsilon-constraint to generate the trade-off solution for the enhancement of one selective product in a multi-product fermentation, with simultaneous minimization of the other product within a threshold limit. The formulation has been applied to the fed-batch fermentation of Aspergillus niger that produces a number of enzymes during the course of fermentation, and of these, catalase and protease enzyme expression have been chosen as the enzymes of interest. Also, this proposed formulation has been applied in the environment of three control variables, i.e. the feed rates of sucrose, nitrogen source and oxygen and a set of trade-off solutions have been generated to develop the pareto-optimal curve. We have developed and experimentally evaluated the optimal control profiles for multiple substrate feed additions in the fed-batch fermentation of A. niger to maximize catalase expression along with protease expression within a threshold limit and vice versa. An increase of about 70% final catalase and 31% final protease compared to conventional fed-batch cultivation were obtained. Novel methods of oxygen supply through liquid-phase H2O2 addition have been used with a view to overcome limitations of aeration due to high gas-liquid transport resistance. The multi-objective optimization problem involved linearly appearing control variables and the decision space is constrained by state and end point constraints. The proposed multi-objective optimization is solved by differential evolution algorithm, a relatively superior population-based stochastic optimization strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xylanase Production under Solid State Fermentation by Aspergillus niger

 Central composite orthogonal design was applied to quantify relations  of xylanase production, loss of dry matter and change of pH with four critical variables during solid state fermentation of a mixture of wheat bran and wheat straw on which Aspergillus niger CCUG 33991 was cultivated. The studied variables included the percentage of wheat straw, temperature, moisture content, and fermentati...

متن کامل

Screening a Strain of Aspergillus niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B1 †

Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ aft...

متن کامل

Lipase Production in Solid State Fermentation Using Aspergillus niger: Response Surface Methodology

Among enzymes, lipases have been widely investigated because of the numerous industrial applications. In this study, optimization of lipase production by Aspergillus niger in solid state fermentation from rice bran as solid substrate was investigated. The optimal conditions with the aid of central composite design (CCD) under response surface methodology (RSM) were obtained.  In the analysis of...

متن کامل

Solid State Fermentation for Production of Chitosan by Aspergillus Niger

The effect of Solid State Fermentation (SSF) on Chitosan production by A. niger was investigated. A. niger BBRC 20004 from Biochemical and Bioenvironmental Research Centre of Sharif University of Technology (Tehran, Iran), was grown on corn residue. Chitosan was extracted from the fungal mycelia using hot alkaline and acid treatment. A. niger was incubated for 12 days on corn residue with moist...

متن کامل

Process Optimization of Citric Acid Production from Aspergillus Niger Using Fuzzy Logic Design

The inherent non-linearity of citric acid fermentation from Aspergillus niger renders its control difficult, so there is a need to fine-tune the bioreactor performance for maximum production of citric acid in batch culture. For this, fuzzy logic is becoming a popular tool to handle non-linearity of a batch process. The present manuscript deals with fuzzy logic control of citric acid accretion b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioprocess and biosystems engineering

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2005